

All Cantor sets are homeomorphic

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 27 July, 2018 (at 21:54)

Entrance. A non-void topological space X is a *generalized Cantor set* if it is:

C1: Totally disconnected.

C2: Compact.

C3: Perfect (each point is a cluster point).

Let $\Lambda := \{0, 1\}$ with the discrete topology. The (abstract) Cantor set is $\Lambda^{\mathbb{N}}$. A particular embedding of this set in \mathbb{R} is as the “middle thirds” set in $[0, 1]$.

1: Theorem. *If X is a generalized Cantor set which is metrizable, then it is homeomorphic with $\Lambda^{\mathbb{N}}$.* \diamond

First we need terminology. Here, a *partition* P of X is a finite collection of disjoint non-void clopen sets whose union is X . Write $Q \succ P$ to mean that partition Q *refines* P ; each atom of P is a union of Q -atoms. Suppose there is an integer M such that Q partitions each atom $E \in P$ into exactly M pieces. One says “ Q is of degree M over P ” and writes $\text{Deg}(Q | P) = M$.

A seq $\vec{P} = (P_1, P_2, \dots)$ is a “refining sequence” if $P_1 \prec P_2 \prec \dots$. For every sequence of atoms $E_1 \supset E_2 \dots$ with $E_n \in P_n$, the intersection $\bigcap_1^\infty E_n$ is non-empty, by the finite intersection property. If each such intersection is exactly one point, we say that \vec{P} “*separates* points”. The sequence E_1, E_2, \dots of atoms is called the *name* of x , where $\{x\} = \bigcap_1^\infty E_n$.

A criterion for homeomorphism

Given topological spaces X and Y , suppose there exists a separating sequence \vec{P} on X and another, \vec{Q} , on Y such that

$$\forall n : \text{Deg}(P_{n+1} | P_n) = \text{Deg}(Q_{n+1} | Q_n).$$

Suppose further that the collection of finite intersections of \vec{Q} -atoms forms a basis for (the topology on) Y . Then the map $f: X \rightarrow Y$ sending \vec{P} -names to corresponding \vec{Q} -names is continuous. So if X is compact then f is a cts bijection from a compact space to a Hausdorff space and is therefore a homeomorphism.

If Y is the abstract Cantor set $\Lambda^{\mathbb{N}}$, given positive integers $\{k_n\}_1^\infty$ there is evidently a separating sequence $\{Q_n\}_1^\infty$ such that $\text{Deg}(Q_{n+1} | Q_n) = 2^{k_n}$. So the theorem will follow if we can show:

2: *A generalized Cantor set X has a separating sequence $\{P_n\}_1^\infty$ such that each $\text{Deg}(P_{n+1} | P_n)$ exists and is a power of two.*

Using the metric

Let $\text{Diam}(P)$ denote the maximum of the diameters of the atoms of P . A refining sequence will certainly separate if $\text{Diam}(P_n) \rightarrow 0$. So (2) will follow from

GOAL: *Given a partition R and $\varepsilon > 0$, there exists a partition $P \succ R$ with $\text{Diam}(P) \leq \varepsilon$ and $\text{Deg}(P | R)$ a power of two.*

3: Lemma.

a: *Suppose $E \subset X$ is non-void and clopen. Then for each point K , there exists a K -set partition of E .*

b: *Given ε positive, there exists a partition P of X with $\text{Diam}(P) \leq \varepsilon$.* \diamond

Proof of (a). Here we use that X is perfect: Each non-void open subset is larger than a singleton.

To start the induction, set $E_1 := E$. Since E_{k-1} is non-void and clopen, it owns two distinct points. They can be separated by a clopen set and so there exist non-void clopen sets P_{k-1} and E_k such that

$$E_{k-1} = P_{k-1} \sqcup E_k.$$

Then $\{P_1, P_2, \dots, P_{k-1}, E_k\}$ forms the desired partition. \spadesuit

Proof of (b). Fix an $x \in X$ and let C be the complement of the open $[\varepsilon/2]$ -ball about x . Each $y \in C$ is disconnected from x and so there is a clopen E_y owning y , with $x \in E_y^c$. Compactness of C gives a finite collection $F \subset C$ with $\bigcup_{y \in F} E_y \supset C$. Thus

$$D_x := \bigcap_{y \in F} E_y^c$$

is a clopen neighborhood of x with diameter less-equal ε .

By compactness, there exists a finite $F \subset X$ with $\bigcup_{z \in F} D_z = X$; we now have a finite cover of X by clopen sets of small diameter. For each $x \in X$, let P_x be the set formed by intersecting, over all $z \in F$, those D_z and those D_z^c which own x . Then

$$\mathsf{P} := \{P_x \mid x \in X\}$$

is a partition with ε dominating its diameter. \spadesuit

We can now prove the Theorem by establishing (GOAL). For each atom $E \in \mathsf{R}$, lemma (3b) yields a partition of E , call it P_E , such that $\text{Diam}(\mathsf{P}_E) \leq \varepsilon$. Let k be a power-of-two which exceeds

$$\text{Max}\{\#(\mathsf{P}_E) \mid E \in \mathsf{R}\}$$

For each E we can apply (3a) and split one atom of P_E into further pieces to arrange that $\#(\mathsf{P}_E)$ equal k ; this can only decreases the diameter of a P_E .

Finally, let P denote the partition of X formed by the atoms of the $\{\mathsf{P}_E \mid E \in \mathsf{R}\}$.